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We present a theoretical study showing that an optically driven excitonic two-level system in a solid-state
environment can act as a heat pump by means of repeated phonon emission or absorption events. We derive a
master equation for the combined phonon bath and two-level system dynamics and analyze the direction and
rate of energy transfer as a function of the externally accessible driving parameters in the coherent control
regime. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon
environment becomes possible.
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In semiconductor quantum dots �QDs�, the ground state
and the state containing a trapped electron-hole pair �exci-
ton� form a two-level system �2LS� which is a popular
implementation of a qubit. Unlike their atomic counterparts,
such excitonic qubits are inextricably coupled to the lattice
dynamics of the surrounding material.1–5 Longitudinal-
optical phonons give rise to excitonic polarons3 and are
known to play an important role for ultrafast excitation.6,7

However, in the much slower coherent control regime that is
so interesting for quantum information processing, optical
phonons only contribute negligibly to the dephasing, and the
coupling to longitudinal-acoustic �LA� phonons via the de-
formation potential is predicted to be dominant at low
temperatures.7,8 In recent experimental studies, the influence
of LA phonons on the coherent QD dynamics has been mea-
sured by the tunnel charge through the QD �proportional to
the excitonic population� following optical excitation,9 and
also through the direct coupling of the QDs dipole to optical
modes in microcavities.10,11 These studies confirm that a 2LS
model with a perturbative treatment of the LA phonon inter-
action provides an excellent description in this regime.

Previous theoretical studies of the exciton-phonon inter-
action in the Rabi regime have fully discarded all informa-
tion about the state of the phonon bath.6–8,12–14 Here we de-
velop a technique for tracking the number of excitations in
the environment, allowing us to analyze the net rate of ab-
sorbed or released bath energy, and we show that a continu-
ously driven excitonic qubit constitutes a controllable two-
way heat pump �see Fig. 1�. Exploiting this cooling effect
would help with gaining further experimental insight into the
exciton-phonon coupling, crucial for managing decoherence
of semiconductor charge qubits, as well as providing an easy
preparatory qubit initialization step for quantum information
processing.

I. MODEL

We consider a self-assembled QD �such as InGaAs en-
cased in GaAs substrate� illuminated by a laser beam with
frequency �l, which is nearly resonant with the crystal
ground state to exciton transition. In a frame rotating with
the laser frequency and within the rotating wave approxima-

tion �RWA�, the system is governed by the Hamiltonian
��=1�,

HS = �/2�z + �/2�x, �1�

where the detuning � describes the energy difference be-
tween the basis states in the rotating frame, � is the Rabi
frequency, coupling the two basis states, and where �x
= �g��e�+ �e��g� and �z= �e��e�− �g��g� are the Pauli pseudospin
operators defined with respect to the QD ground state �g� and
single-exciton state �e�.

Let us further assume that the excitonic qubit is coupled
to a bath of phonons, resulting in the total Hamiltonian,

H = HS + HB + HI, �2�

where HB=�q�qâq
†âq is the free Hamiltonian of the phonon

modes with âq
† and âq being the creation and annihilation

operators of a phonon in mode q with frequency �q. The
exciton-phonon interaction term is generically given by1,6

HI = �z�
q

gq�âq
† + âq� , �3�

where the gq are coupling constants. Moving into the inter-
action picture with respect to HS and HB, we obtain for the
transformed interaction Hamiltonian,
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FIG. 1. �Color online� The driven exciton acts as a heat pump
between the phonon and the electromagnetic environment. If the
driving is detuned from the exciton transition, the laser-dressed
eigenstates �see Ref. 14� are composed of different amounts of the
ground and excited state. Cooling is possible when spontaneous
emission repeatedly takes the system into its lower eigenstate, from
where it can only absorb phonons.
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H̃I�t� = �̃z�t��
q

gq�âq
†ei�qt + âqe−i�qt� , �4�

where �̃z�t� denotes the transformed �z operator.
For monitoring phonon excitations in the QDs solid-state

environment, we adapt a technique from the literature on
observing single-electron charge transport15–17 by performing
a gauge transformation which adds phase markers to the in-
teraction Hamiltonian. Crucially, these do not alter the sys-
tem’s dynamics. We define the phonon-number specific den-
sity matrix, i.e., an object that contains information about
both the qubit dynamics and the number of phonons in the
environment,

�m = trE�Pm�� , �5�

where trE denotes the trace over the phonon modes, � is the
density matrix of the combined phonon-qubit system, and Pm
is a projection operator,

Pm =
1

2�
�

0

2�

d	e−im	E	, E	 = ei	N̂

with the total phonon number operator N̂=�qâq
†âq, and the

gauge transformation operator E	. The projection operator
Pm projects out all parts of the wave function with a phonon
number different from m �for a detailed discussion, see Ref.
16�. The probability of having emitted m phonons into the
environment is then obtained by the matrix trace of the
phonon-number specific density matrix,

pm = tr��m� . �6�

It is convenient to introduce the Fourier-transformed density
matrix as

�	 = �
m

eim	�m = tr��	�

with the definition �	=E	/2�E−	/2
† . This particular choice cor-

responds to an initial state with a definite phonon number as
in Ref. 15. It can be shown that the full density matrix �	 in
the interaction picture obeys the von Neumann equation,

�̇	�t� = − i�H̃	�t��	�t� − �	�t�H̃−	�t�	 = L	�t��	�t� ,

defining the superoperator L	�t�, where the interaction

Hamiltonian H̃	=E	/2H̃IE−	/2
† has acquired phase markers on

the phonon creation and annihilation operators,

H̃	 = �̃z�t��
q

gq�e−i�	/2�âq
†ei�qt + ei�	/2�âqe−i�qt� , �7�

written in a shorter notation as H̃	= �̃z�t�B	�t�. The phase
factor exp�−i	 /2� then keeps track of the creation of
phonons while exp�i	 /2� tracks annihilation processes.

We proceed along the standard path of deriving a master
equation �ME�,18 and obtain an integrodifferential equation
for the reduced density matrix of the system �	,

�̇	�t� = trE�
0

t

dsL	�t�L	�s��	.

After the Born-Markov approximation,18 the resulting Mar-
kovian ME reads

�̇	�t� = − �
0




ds�
i,j

Gij
	�s�Si�t�S j�t − s��	�t� ,

where we have defined the superoperators S1�t�X= �̃z�t�X,
S2�t�X=X�̃z�t� and the environment correlation functions
G11

	 �s�= �B	�s�B	�0��, G12
	 �s�=−�B−	�0�B	�s��, G21

	 �s�
=−�B−	�s�B	�0��, and G22

	 �s�= �B−	�0�B−	�s��. To simplify
the further algebraic evaluation, we express the operator
�̃z�t� in terms of system eigenoperators, yielding

�̃z�t� = �
��
0,��

�e−i�tP� + ei�tP�
† � , �8�

where �=��2+�2 now denotes the spacing between the
system eigenstates �−�=cos ��g�−sin ��e� and �+�=cos ��e�
+sin ��g� of Hamiltonian �1� with 2�=arctan � /�. In this
basis, P0=cos 2���−��−�− �+��+�� /2 and P�=sin 2��−��+�.

By introducing the Hermitian operator P̃=2P0+e−i�tP�

+ei�tP�
† and abbreviating Q̃=e−i�tP�, we obtain the follow-

ing interaction picture ME after some straightforward alge-
bra:

�̇	 = ↓�e−i	�Q̃�	P̃† + P�	Q̃†� − P̃†Q̃�	 − �	Q̃†P̃	

+ ↑�ei	�P̃†�	Q̃ + Q̃†�	P̃� − P̃Q̃†�	 − �	Q̃P̃†	 ,

where the rates are given by ↓=J����n���+1	 /2 and ↑
=J���n��� /2 when the phonon bath �E is in a thermal
state.19 Further,

J��� = 2��
q

�gq�2��� − �q� �9�

is the spectral density of phonon modes and n���
= �exp����−1	−1 denotes the thermal occupancy of a phonon
mode with frequency �.

Upon going back to the Schrödinger picture, the operators

P̃ and Q̃ lose their time-dependent phase factors, turning into
P=�z and Q= P�, respectively. We can return to the number
representation with the transformation,

�m =
1

2�
�

0

2�

d	e−im	�	.

This yields a set of coupled differential equations for the
evolution of phonon-specific density matrices. After a RWA
�implemented by setting P=L, expected to be valid when-
ever ��J��� �Refs. 18 and 20�	, we finally obtain a ME in
diagonal Lindblad form

�̇m = − i�HS�t�,�m	 + ↓�2P��m+1P�
† − P�

† P��m − �mP�
† P��

+ ↑�2P�
† �m−1P� − P�P�

† �m − �mP�P�
† � . �10�

This equation describes the joint phonon-qubit dynamics in
the case where the phonon environment is only weakly dis-
turbed from thermal equilibrium by the excitonic qubit.
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II. PHONON-ASSISTED TRANSITIONS

We now apply Eq. �10� to an excitonic qubit that is opti-
cally driven by a pulse of constant intensity �. The initial
state at t=0 is the system ground state with zero excitations
in the environment, �n�0�=�n,0�g��g�. For simplicity, we de-
fine the spectral density phenomenologically, J���
=��3 exp�−�2 /�c

2�, where � describes the effective
electron-phonon coupling strength and �c is the high-
frequency phonon cutoff. For relatively weak driving with a
peak Rabi frequency � well below both the electron and the
hole cutoff, we can neglect the exponential cutoff term alto-
gether. Setting �=1 /4 ps2 yields a coupling strength that is
consistent with the magnitude of the GaAs deformation po-
tential reported in the literature.6,21

The structure of Eq. �10� permits the emission or absorp-
tion of no more than a single phonon: The system is initial-
ized in the state �g��g�= ��−�+ �+����−�+ �+�� /2, i.e., in an
equal superposition of system eigenstates. The Lindblad op-
erator P� induces a transition from �+� to �−� while P�

† raises
population from �−� to �+�. Once a decay process has hap-
pened, we find the system in the �−� state, meaning it cannot
decay again.

Provided the excitation is sufficiently long, the population
ratios thus tend to a Boltzmann distribution, as is obvious
from the phonon emission rate proportional to n���+1 and
the absorption rate proportional to n���,

lim
t→


tr��0�t��+ ��+ �	
tr��1�t�	

= lim
t→


tr��−1�t�	
tr��0�t��− ��− �	

= e−��.

So far, the only perturbation to the system has been
caused by the coupling to the phonon bath, resulting in single
phonon emission and absorption. Realistically, other dissipa-
tive processes will be present in any physical system. We
shall include these using additional phenomenological noise
operators, such as pure dephasing and radiative decay of the
exciton. We model these processes with an additional Lind-
blad dissipator18 on the right-hand side of Eq. �10�,

D� = L�L† −
1

2
�L†L� + �L†L�� �11�

with respective Lindblad operators L=�z and L=�−, and
where  is the dephasing or decay rate. These operators do

not preserve the system’s eigenstates; consequently, under
their action, phonon-assisted transitions become possible in
any of the �n subspaces. This leads to a dynamic equilibrium,
where phonon-assisted transitions keep occurring after the
transient �coherent� evolution of �=�n�n has subsided. Our
theoretical model is well suited for illustrating this behavior:
Fig. 2 presents the pn distribution at different points of time
for the case of optical decay.

The pure dephasing �z operator randomizes the phase be-
tween �g� and �e�, thus balancing the population of �−� and
�+�. Consequently, once the steady state has been reached,
phonon emission always occurs with a faster rate then ab-
sorption, and the distribution is therefore shifted in the direc-
tion of increasing n, meaning the average number of emitted
phonons increases. On the other hand, the distribution can
move in either direction for optical decay from �e� to �g�. For
�=0, �g� consists of an equal superposition of �−� and �+�
while it contains a larger �−� component for ����0. Under
these latter circumstances, it is possible for phonon absorp-
tion to permanently dominate over emission, shifting the dis-
tribution in the direction of decreasing n, as shown in the
right panel of Fig. 2. In this case, thermal energy is removed
from the QDs bulk surroundings and released into the wider
environment by spontaneous photon emission �depicted in
Fig. 1�.

III. HEAT TRANSFER RATE

To quantify this observation, we consider only the radia-
tive decay operator of Eq. �11� in the following. We proceed
by calculating the rate of phonon emission or absorption,
which is given by17

�ṅ�t�� =
d

dt
�
m

mpm =�i
d

d	
tr��̇	��

	=0

= 2 tr�↓Q��t�Q† − ↑Q†��t�Q	 , �12�

where ��t� is obtained by integrating Eq. �10� inclusive of the
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FIG. 2. �Color online� The distribution of pn at different points
of time in the presence of radiative decay. The constant excitation
pulse uses �=1 ps−1��2 /3 meV� and a detuning � as indicated in
the plots �in ps−1�. The decay rate is fixed at =0.1 ps−1. The
different colors/symbols correspond to time as follows: red
squares=1.2, green circles=10, blue diamonds=40, gray triangles
=70, all in units of full Rabi cycles, 2� /��2+�2.
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FIG. 3. �Color online� The rate of phonon-induced transitions

�ṅ�ss �solid red� and the rate of energy transfer Ė �dashed blue�, both
as a function of the detuning for �=1 ps−1. The rates shown here
are the steady-state values of Eq. �12� for the decay rate 
=0.1 ps−1. A positive sign indicates net phonon emission whereas a
negative corresponds to net phonon absorption. The inset shows
�ṅ�ss for fixed �=1 ps−1 as a function of  at T=10 K.
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Lindblad dissipator �Eq. �11�	 with L=�− and disregarding
the indices m of �m.

Figure 3 presents the steady-state value �ṅ�ss of Eq. �12�
as a function of �. As expected, net phonon absorption is
only possible at finite temperature for off-resonant excitation.
It is a natural question to ask at which rate energy is trans-
ferred to or from the surroundings of the system. Consider-
ing the quantity Ė=��2+�2�ṅ�ss shows that the number of
absorbed phonons decreases for a larger detuning, yet their
energy is greater, shifting the � that achieves optimal heat
transfer. The inset of Fig. 3 shows that the process is limited
by the radiative decay time  of the system. A saturation
only occurs when the spontaneous emission rate becomes
faster than that of phonon-mediated transitions but this re-
gime would require an unrealistic optical lifetime on the or-
der of a picosecond or less.

We proceed by estimating the achievable cooling rate for
realistic parameters in SI units. Using �0=�=1 ps−1 corre-
sponds to a phonon energy of �=1.49�10−22 J. With ap-
proximately 0.02 absorbed phonons per picosecond �at T
=20 K�, we obtain a theoretical energy transfer rate of
roughly 3�10−12 J /s. Neglecting heating effects, this
achieves a temperature reduction on the order of 1 K/s for a
micrometer cube of GaAs.22 Of course, any real sample will
also be subject to heating processes, e.g., by the laser illumi-
nation and by thermal contact to its surroundings. While it is
difficult to estimate the precise rate of heating, it could plau-
sibly exceed the cooling rate in bulk samples. However, by
incorporating the QD on a nanopillar or a cantilever, the
thermal coupling to the bulk could be reduced to make net

cooling possible.23 An experiment to show the cooling effect
could proceed in the following way: insert a cooling cycle
before the standard sequence for observing Rabi oscillations
and study the influence of the length of the cooling cycle on
coherence times. If cooling is successful one would expect
increased coherence times.

IV. SUMMARY

We have shown that a single excitonic QD, an experimen-
tally well-studied system, can act as a heat pump. Adapting a
counting statistic approach from the context of charge trans-
fer, we have discussed how energy can be removed from the
QDs environment by means of repeated phonon absorption
in conjunction with spontaneous photon emission. This effect
does not rely on the structure of the spectral density, making
our analysis applicable to similar systems with a different
coupling mechanism to a bath of harmonic oscillators. This
opens up the possibility of experimental investigation of
quantum heat pumps as well as the prospect of environment
preparation for the use of excitonic systems in quantum in-
formation processing.
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